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The Heusler structure of Au,MnAl. By D.P.Morris, C.D.Price and J.L.Huceues, Department of
Physics, University College of North Wales, Bangor, Wales

(Received 21 December 1962)

The Heusler structure is body-centred cubic with a
face-centred superlattice, and may be thought of as four
interpenetrating face-centred cubic lattices 4, B, C, and
D, of which A and C are identical. In the well-known
ferromagnetic Heusler alloys Cu,MnX, Cu atoms lie on
lattices 4 and C, Mn atoms on B, and X atoms (which
may be Al, In, or Sn) on D. The structure factor formula
(Bradley & Rogers, 1934) takes the following forms:
(1) main lines, Q*(= h2+k2+1%) = 8,16, 24, ..., F
fa+fB+fc+fp; (2) even superlattice lines, Q*=4, 12,
20, ..., F=(fa+fc)—(fB+fp); (3) odd superlattice lines,
Q2 =3,11,19, ..., F = {(fA —fc)2+(f3 ——fl))z}%; where
fa,fB, ... are the scattering factors of the atoms on
the 4, B, ... lattices. The structure is distinguishable
from the B2 or CsCl type, in which lattices B and D
are also identical, by reflexions of type (3) if there is a
sufficiently large difference in the scattering factors of
the atoms on B and D.

In an earlier attempt to discover gold-based Heusler
alloys (Morris, Preston & Williams, 1959) this difference
proved too small to allow these reflexions to be detected
with certainty by conventional X.ray film and micro-
photometer techniques, although the ferromagnetism
exhibited by the alloy at low temperatures suggested
that the Heusler structure existed. This has now been
confirmed both by neutron diffraction (Bacon, 1962a)
for which the scattering factors are more suitable, and
by our own re-examination with an X-ray diffractometer.

Powder samples annealed at 700 °C for 24 hours or
more we examined after different rates of cooling. After
quenching of the samples in iced water no reflexions
other than the even superlattice and main lines were
definitely detected, but after they had been cooled to
room temperature over a period of 6 hours two small
peaks appeared which were identified as the 111 and 311
reflexions of a Heusler structure of lattice parameter
6-358 A. A slower cooling rate (over about 3 days)
produced additional lines which were indexed as belonging
to a second cubic structure of lattice parameter 5-993 A.
This is presumably the Al,Au phase (Pearson, 1958),
so that the equilibrium structure of Au,MnAl at lower
temperatures is two-phase. The results show that the
ordered arrangement of the Mn and Al atoms on the
B and D lattices is at least partially destroyed on raising
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the temperature but the X-ray intensities are too small
to make any accurate quantitative measurements on
the degree of order. The latter however has a marked
effect on the magnetic properties, the saturation intensity
(extrapolated to infinite field and absolute zero) in-
creasing from about 24 e.m.u.g™! for a quenched sample
to about 55 e.m.u.g~! for a slow-cooled sample. The
Curie point of the latter is —53 °C. The detailed magnetic
measurements and the thermal expansion of Au,MnAl
and Au,Mn,_;Al; (0 <z <1) will be reported elsewhere.

A comparison of the ecrystal structures and magnetic
properties of AuMn and Au,MnAl is also of interest.
AuMn has a CsCl type of structure and is antiferro-
magnetic, but the observed magnetic structure (Bacon,
1962b) is not that in which nearest neighbours in the
simple cubic lattice of Mn atoms are antiferromagnet-
ically aligned. Instead there appears to be a strong
antiferromagnetic exchange interaction between the pairs
of Mn atoms situated at the ends of a body diagonal.
In the Heusler structure of Au,MnAl every alternate
Mn atom along cube edges in AuMn is replaced by Al,
so that along (111) directions the sequence of atoms is
changed from Mn—-Au-Mn—-Au-Mn to Mn—-Au-Al-Au-Mn.
We suggest that the antiferromagnetic coupling in AuMn
is due to indirect exchange interaction between Mn
atoms via an intervening Au atom. This has been removed
in Au,MnAl and the alloy is ferromagnetic.

We wish to thank the Department of Scientific and
Industrial Research for a maintenance grant to two of us
(C.D.P. and J.L. H.) and the Council of the Royal
Society for a grant-in-aid.
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By T.S. G. KrisENAMURTY, Andhra University, Waltair,

(Received 7T March 1963)

Starting from Murnaghan’s theory (1937) of finite strain,
Birch (1947) considered the theory of finite elastic strain
for a medium of cubic symmetry in which the expression
for free energy contains third-order strain components.
Introducing the concept of effective elastic constants,

Chelam (1961) has recently studied the effect of large
stresses on elastic solids, and the results he obtained
by taking the second-order and third-order strain com-
ponents in the strain-energy expression are not in com-
plete agreement with the experimental results. To obtain
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qualitative and quantitative agreement between theory
and experiment, Chelam suggested that one has to include
the fourth-order strain components also in the strain-
energy function.

Physical properties of substances generally arise out of,
and represent the relation between, two quantities each
of which may be a scalar, or a vector or a symmetric
tensor of second order, etc. For instance, the density of
a substance is the relation between two scalars, whereas
the dielectric constant represents the relation between
two vectors. Similarly elasticity arises out of the relation
between the applied-stress tensor and the resulting strain
tensor. Fourth-order elasticity is the relation between
& symmetric stress tensor and the cube of a symmetric
strain tensor with the additional condition that the
coefficients Cyjx satisfy the relations Ciju =Cjur = Cujr =
Ciwij elc., (4,7, k,1=1, 2, 3, 4, 5, 6). Under this condition,
one can see that the maximum number of fourth-order
elastic coefficients is 126, which is the actual number
for a triclinic crystal. ’

Using the following expressions

Cgz —> Gizg COSE @ + Oty SIN? @ + 202y COS @ sin @

Oyy —> Gizz SIN? @ + oy cOS? @ — 20y SiN @ COS @

Kzz —> Kzz

oyz —> Foyz COS @F &z SN @

Gizz —> Foyz SIN @ F 0z COS @

Ozy —> (= Otzz + Giyy) SIN P COSP + Xzy (COSZ@ —sin? @),

(1)

for the transformation of the components &zz, ..., dzy
of a second-order symmetrical tensor under a rotation
or a rotation-reflection through an angle ¢ about the
z axis, the terms contributed by each of these 126 con-
stants to the character (Bhagavantam & Suryanarayana,
1949) are calculated. The character so obtained from
these 126 coefficients is given by

} (2)

the upper sign referring to pure rotations and the lower
sign to rotation-reflections. Applying the general formula
(Bhagavantam & Venkatarayudu, 1951)

2i(R) = 256 cos® ¢ + 128 cos? p — 320 cos® ¢
F 96 cos® ¢ + 160 cos?* ¢ + 24 cos® ¢
—28cos?@+2,

1
ni =5 2 hyxi(R) 1i(R) (3)
7

the values of n; appropriate to the total symmetric
irreducible representation, which is characterized by the
fact that y;(B)=1 for all R, are found in respect of the
32 crystal classes and are given hereunder:

E, Ci: 126; Cs, Cy, Con: 70; Coy, Dy, Dop: 425 Cy, Sy, Cant
36; Cay, Ssvs Dy Dan: 255 Cgy Sg: 425 Cyy, Dy, D3g: 28;
Cany Cr Cent 24; Dyp, Covp Dy, Den: 195 T, Tr 14;
Td, 0’ Oh: 11.

We again observe (Bhagavantam & Suryanarayana,
1947) that the five point groups coming under the
cubic system can be divided into two classes so far as
the fourth-order elastic coefficients are concerned.

The number of fourth-order elastic coefficients for a
perfect isotropic solid can be obtained from the following
formula (Venkatarayudu & Krishnamurty, 1952):
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1¢7, , ,
ng = -2—RSO(X+X— +xlx)de, .. (4)

where yx! is the same as y;(R) given by (2), and y, =
1+ cos p. Substituting the values of x} and y, in (4),
we obtain the value 4 for n; and this represents the
number of independent fourth-order elastic coefficients
of an isotropic solid, which are described below.

The 11 independent fourth-order elastic coefficients
coming under the Op point group of the cubic system
may be described by the following relations:

Cuu =Cpsy = Casaa ’
4444 = V5555 = V6666 »
1112 = C1113 = Ca905 = Cysn = Csssz =Caoa1 »
1123 = V2213 = Vg2 »
aa12 = Cis20 =Clg1s = C413 =Cs512=Cle2s »
4423 = Uss13 = Cssm ’ (5)
1456 — 2466 = L3456 >
1122 = V2233 = V1138 »
1144 = V2255 = L3366 5
1155 = Crie6= 02244 = 03355 =Cyo5 = 03344 >
4455 = V466 =

5566 °

In the case of isotropic solids, there are seven further
relations among these eleven, namely:

401111 = 01112 + 01155 »

6C111 = Cigos + Criz22 +Cs »
301112 =C1244 T Cr103 5
201122 =CUh1e3 + 01144 ’ (6)

3C 1155 = Cr2a4 + Cras6 + Cr1aa + Casss >
6666 = 4455 »

2C 1345 + Cly56 = 2C 1344 -

This again confirms our earlier conclusion that the
number of independent fourth-order elastic coefficients
of an isotropic solid reduces itself to 4 only.

One may easily see that the number of nth order
elastic coefficients, symmetric in all the n suffixes,
which belong to the 0, point group of the cubic system,
will be n2 —2n+ 3 (n=2), whereas for an isotropic solid
the corresponding number would be »n only.

The author’s thanks are due to Prof. T. Venkatarayudu
for his kind interest in the problem.
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