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The Heusler  structure is body-centred  cubic wi th  a 
face-centred superlattice, and  may  be thought  of as four 
in terpenet ra t ing face-centred cubic lattices A, B, C, and 
D, of which A and C are identical. In  the  well-known 
ferromagnetic l=[eusler alloys Cu2MnX, Cu atoms lie on 
lattices A and C, Mn atoms on B, and X atoms (which 
may  be A1, In, or Sn) on D. The structure factor formula 
(Bradley & Rogers, 1934) takes the following forms: 
(1) main  lines, Q~(= hg..bk~+l 2) = 8, 16, 24 . . . . .  F = 

fA -bfB +fc  +fD ; (2) even superlattice lines, Q2 = 4, 12, 
20 . . . . .  F = (fA +fc) -- (fB +fD) ; (3) odd superlatt ice lines, 
Q2 _- 3, 11, 19 . . . . .  F = ((fa--fc)2+(fB--fD)~}½; where 
fA , fB  . . . .  are the scattering factors of the  atoms on 
the A, B . . . .  lattices. The structure is distinguishable 
from the B2 or CsC1 type, in which lattices B and D 
are also identical, by reflexions of type (3) if there is a 
sufficiently large difference in the scattering factors of 
the  atoms on B and D. 

In  an earlier a t t emp t  to discover gold-based Heusler  
alloys (Morris, Pres ton & Williams, 1959) this difference 
proved too small to allow these reflexions to be detected 
wi th  certainty by convent ional  X-ray film and micro- 
pho tomete r  techniques,  a l though the  ferromagnet ism 
exhibi ted by the alloy at low temperatures  suggested 
tha t  the Heusler  structure existed. This has now been 
confirmed both  by neut ron  diffraction (Bacon, 1962a) 
for which the  scattering factors are more suitable, and 
by our own re-examinat ion with an X. ray  diffractometer.  

Powder  samples annealed at  700 °C for 24 hours or 
more we examined after different rates of cooling. After 
quenching of the samples in iced water  no reflexions 
other than  the even superlattice and  main  lines were 
definitely detected,  but  after they  had  been cooled to 
room tempera ture  over a period of 6 hours two small 
peaks appeared which were identified as the 111 and 311 
reflexions of a Heusler  structure of lattice parameter  
6.358 A. A slower cooling rate (over about  3 days) 
produced addit ional  lines which were indexed as belonging 
to a second cubic structure of lattice parameter  5.993 .~. 
This is presumably the A12Au phase (Pearson, 1958), 
so tha t  the equilibrium structure of Au2MnA1 at lower 
temperatures  is two-phase. The results show tha t  the  
ordered ar rangement  of the Mn and A1 atoms on the 
B and D lattices is at  least partially destroyed on raising 

the  tempera ture  but  the  X-ray intensities are too small 
to make  any accurate quant i ta t ive  measurements  on 
the degree of order. The lat ter  however  has a marked  
effect on the magnet ic  properties, the  saturat ion intensi ty  
(extrapolated to infinite field and absolute zero) in- 
creasing from about  24 e.m.u.g -1 for a quenched sample 
to about  55 e.m.u.g -1 for a slow-cooled sample. The 
Curie point  of the la t ter  is - 53 °C. The detailed magnet ic  
measurements  and the  thermal  expansion of Au2MnA1 
and Ah2Mn2_xAlx (0 <x  < 1) will be reported elsewhere. 

A comparison of the  crystal structures and magnet ic  
properties of AuMn and Au~MnA1 is also of interest.  
AuMn has a CsC1 type of structure and is antiferro- 
magnetic,  bu t  the observed magnet ic  structure (Bacon, 
1962b) is not  tha t  in which nearest  neighbours in the  
simple cubic lattice of Mn atoms are antiferromagnet-  
ically aligned. Ins tead  there appears to be a strong 
antiferromagnetic  exchange interaction between the pairs 
of Mn atoms si tuated at  the ends of a body diagonal. 
In  the Heusler  s tructure of Au2MnA1 every al ternate  
Mn a tom along cube edges in AuMn is replaced by A1, 
so tha t  along (111} directions the sequence of atoms is 
changed from M n - A u - M n - A u - M n  to Mn-Au-A1-Au-Mn.  
We suggest tha t  the  antiferromagnetic  coupling in AuMn 
is due to indirect  exchange interact ion between Mn 
atoms via an intervening Au atom. This has been removed 
in Au~MnAI and the  alloy is ferromagnetic.  
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Start ing from Murnaghan's  theory (1937)of finite strain, Chelam (1961) has recently s tudied the effect of large 
Birch (1947)considered the theory of finite elastic strain stresses on elastic solids, and the results he obtained 
for a med ium of cubic symmet ry  in which the expression by taking the second-order and third-order  strain corn- 
for free energy contains third-order  strain components ,  ponents  in the strain-energy expression are not  in corn- 
In t roducing  the concept of effective elastic constants,  plete agreement  with the exper imental  results. To obtain 
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qua l i t a t i ve  a n d  q u a n t i t a t i v e  a g r e e m e n t  b e t w e e n  t h e o r y  
a n d  expe r imen t ,  Che lam sugges ted  t h a t  one has  to  inc lude  
the  fou r th -o rde r  s t ra in  c o m p o n e n t s  also in t he  s t ra in-  
e n e r g y  func t ion .  

Phys i ca l  p roper t i e s  of subs tances  genera l ly  arise ou t  of, 
a n d  r ep re sen t  the  re la t ion  be tween ,  two quan t i t i e s  each 
of w h i c h  m a y  be  a scalar,  or  a vec to r  or a s y m m e t r i c  
t ensor  of second  order ,  etc. F o r  ins tance ,  the  dens i ty  of 
a subs t ance  is t he  re la t ion  b e t w e e n  two scalars,  whe reas  
t h e  die lect r ic  c o n s t a n t  r ep resen t s  t he  r e l a t ion  b e t w e e n  
two vec tors .  S imi la r ly  e las t ic i ty  arises ou t  of t he  re la t ion  
b e t w e e n  the  appl ied-s t ress  t ensor  a n d  the  resu l t ing  s t ra in  
tensor .  F o u r t h - o r d e r  e las t ic i ty  is the  re la t ion  b e t w e e n  
a s y m m e t r i c  s tress t ensor  a n d  the  cube  of a s y m m e t r i c  
s t ra in  t enso r  w i t h  t h e  add i t i ona l  cond i t ion  t h a t  t he  
coeff icients  C~jl~ sat is fy  t he  re la t ions  Ci j~  = C ~  = C ~  = 
Ci~ i etc., (i, ~', k, l = 1, 2, 3, 4, 5, 6). U n d e r  this  condi t ion ,  
one  can  see t h a t  t he  m a x i m u m  n u m b e r  of f ou r th -o rde r  
elast ic  coeff icients  is 126, w h i c h  is the  ac tua l  n u m b e r  
for  a t r ic l inic  crys ta l .  

Us ing  t h e  fol lowing expressions  

OCxx --> ~ x x  0OS2 ~ @ O~yy Sin,-  q) -I- 20~xy COS ~ S i n  

O~yy -->- O~xx s i n  ~" ¢]) -}- O~yy COS ~" (~ - -  2 a x y  s i n  ~ COS (p 

o~= ~ o;= (1) 
ocyz --> +_ ayz cos ~0 q= azx sin 
azx ~ ± ayz Sin ~ + azx COS (p 
axy -+ ( --axx +ayy) s in~  cos~ +axy  (cos,- ~ -- sin,- ~), 

for  t h e  t r a n s f o r m a t i o n  of t h e  c o m p o n e n t s  axx . . . . .  axy 
of a s econd-o rde r  s y m m e t r i c a l  t ensor  u n d e r  a r o t a t i o n  
or  a ro t a t ion - re f l ec t ion  t h r o u g h  an  angle  ¢ a b o u t  the  
z axis,  t he  t e r m s  c o n t r i b u t e d  b y  each of these  126 con- 
s t an t s  to  t h e  c h a r a c t e r  ( B h a g a v a n t a m  & S u r y a n a r a y a n a ,  
1949) a re  ca lcu la ted .  T h e  c h a r a c t e r  so o b t a i n e d  f rom 
these  126 coeff icients  is g iven  b y  

g;.(R) = 256 cos s ~ _+ 128 cos v ¢ - 320 cos s ~ 
~- 96 cos s ~ + 160 cos 4 ~ + 24 cos ~ ~ / (2) 
- 28 cos '  ~0 + 2 ,  

t h e  u p p e r  sign re fe r r ing  to  pu re  ro t a t ions  a n d  the  lower  
s ign to ro ta t ion- re f lec t ions .  A p p l y i n g  the  genera l  f o rmu la  
( B h a g a v a n t a m  & V e n k a t a r a y u d u ,  1951) 

n, = l  ~ h , ~ ( R ) ~ ( R )  , (3) 

t h e  va lues  of n~ a p p r o p r i a t e  to  t he  to t a l  s y m m e t r i c  
i r reduc ib le  r ep re sen ta t ion ,  w h i c h  is cha rac t e r i zed  b y  the  
fac t  t h a t  g~(R)= 1 for  all  R,  a re  f o u n d  in respec t  of the  
32 c rys ta l  classes a n d  are  g iven  h e r e u n d e r :  

E ,  C~: 126; Ca, C,-, C,-h: 70; Csv, D,-, D,-a: 42; C4, Sa, C4h: 
36; C4v, Say, D4, D4a: 25; Cs, $6 : 42; Car, Ds, Dan: 28; 
Csa, C~, C~h: 24; Dsa, C~v, D~, D~a: 19; T,  Ta:  14; 
T~, 0 ,  0a :  11. 

W e  aga in  observe  ( B h a g a v a n t a m  & S u r y a n a r a y a n a ,  
1947) t h a t  t he  five po in t  g roups  coming  u n d e r  the  
cubic  s y s t e m  can  be d iv ided  in to  two  classes so far  as 
t he  fou r th -o rde r  elast ic  coeff icients  are  concerned .  

T h e  n u m b e r  of f ou r th -o rde r  elast ic  coeff icients  for  a 
per fec t  isotropie  solid can  be o b t a i n e d  f rom the  fol lowing 
f o r m u l a  ( V e n k a t a r a y u d u  & K r i s h n a m u r t y ,  1952): 

n~ = (z'+ z -  + Z ' z + ) d ~ ,  . . .  (4) 
0 

where  Zi~ is the  same  as z;(R) g iven  b y  (2), a n d  Z± = 
1 +cos ~0. Substituting the values of X~ and Z~ in (4), 
we obtain the value 4 for ni, and this represents the 
number of independent fourth-order elastic coefficients 
of an isotropic solid, which are described below. 

The 11 independent fourth-order elastic coefficients 
coming under the Oh point group of the cubic system 
may be described by the following relations: 

Cl111 ~-- C,-22,- = C3333 , 

C4444 = C5555 = C6666 , 
Cm~ = C m s  = C,-,-,-3 = C~331 = Css3,- = C,-~,-1 , 
Cl123 ~--- C2,-13 - -  C3312 , 

C4412 -~ C55,- 3 -~ C6613 = C4413 = C551,  , - -  C6623 , 
C44~3 = C5513 = C6612, 
~1456 ~--~ C2456 -~- C3456 ' 
C1122 = C2233 = Cl133 , 
Cn44 = C,-,-55 = C3366, 
Cl155 = Cl166 : C2244 --~ C3355 = C,-266 ~-- C3344 , 
C4455 = C4466 = C5566 • 

(5) 

I n  t he  case of isotropie  solids, t he re  a re  seven  f u r t h e r  
re la t ions  a m o n g  these  eleven,  n a m e l y :  

4Cl111 --- Cl112 q- Cl155 , 
6Cl111 --- G6666 + Cl12,- -~- C,-344 , 
3Cnl,- = C1244 + Cn2s ,  
2Cn,-2 = Cn,-s + Cn44 , (6) 
3Cns5 = C1,-44 + C1456 + Cn44 + C445s, 
2C66e6 = C4455 , 

2C1~44 + C14~6 = 2C~344 • 

This  aga in  conf i rms  our  ear l ier  conclus ion  t h a t  t h e  
n u m b e r  of i n d e p e n d e n t  f ou r th -o rde r  elastic coeff icients  
of an  isotropic  solid r educes  itself to  4 only.  

One m a y  easi ly see t h a t  t he  n u m b e r  of n t h  o rde r  
elastic coefficients,  s y m m e t r i c  in all t he  n suffixes,  
wh ich  be long  to the  Oa po in t  g roup  of the  cubic sys t em,  
will  be  n , - - 2 n  + 3 (n = 2), whe reas  for  an  isotropic  solid 
the  co r respond ing  n u m b e r  w o u l d  be  n only .  

T h e  a u t h o r ' s  t h a n k s  are  due  to  Prof .  T. V e n k a t a r a y u d u  
for his  k i n d  in t e res t  in t h e  p rob lem.  
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